Composite distance metric integration by leveraging multiple experts' inputs and its application in patient similarity assessment
نویسندگان
چکیده
In the real world, it is common that different experts have different opinions on the same problem due to their different experience. How to come up with a consistent decision becomes a critical issue. As an example, patient similarity assessment is an important task in the context of patient cohort identification for comparative effectiveness studies and clinical decision support applications. The goal is to derive clinically meaningful distance metric to measure the similarity between patients represented by their key clinical indicators. It is desirable to learn the distance metric based on experts’ knowledge of clinical similarity among subjects. However, often different physicians have different understandings of patient similarity based on the specifics of the cases. The distance metric learned for each individual physician often leads to a limited view of the true underlying distance metric. The key challenge will be how to integrate the individual distance metrics obtained for a group of physicians into a globally consistent unified metric. To achieve this goal, we propose the Composite Distance Integration (Comdi) approach in this paper. Comdi first construct discriminative neighborhoods from each individual metrics, then it combines all discriminative information in those neighbrhoods to learn a single optimal distance metric. We formulate Comdi as a quadratic optimization problem and propose an efficient alternating strategy to find the solution. Besides learning a globally consistent metric, Comdi provides an elegant way to share knowledge across multiple experts without sharing the underlying data, which lowers the risk of disclosing private data. Our experiments on several benchmark data sets show approximately 10% improvement in classification accuracy over baseline methods, which suggests that Comdi is an effective and general metric learning approach. We also demonstrate two case studies on applying Comdi to real world clinic data sets.
منابع مشابه
Integrating Distance Metrics Learned from Multiple Experts and its Application in Inter-Patient Similarity Assessment
Patient similarity assessment is an important task in the context of patient cohort identification for comparative effectiveness studies and clinical decision support applications. The goal is to derive clinically meaningful distance metric to measure the similarity between patients represented by their key clinical indicators. It is desirable to learn the distance metric based on experts’ know...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملThe Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کاملAlgebraic distance in algebraic cone metric spaces and its properties
In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 5 شماره
صفحات -
تاریخ انتشار 2012